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Abstract

The numerical simulation of multiphase flows in Light Water (Nuclear) Reactors, LWRs, for
normal, accident, and off-normal operation, and for operational optimization must cover a
huge disparity of transient time durations, from milliseconds to years. In addition, our
recent work has shown that the application of classical Riemann approaches, which
pervade modern computational fluid dynamics (CFD), suffer numerical accuracy
degradation, especially for compressible liquid flows. In this setting, all-speed or Mach
uniform methods are needed which can be accurately and efficiently integrated over a very
large range of time scales. Thus we need a multi-time-scale integration approach to
compliment our previously documented multi-spatial-scale approach to multiphase flow
modeling [1]. This report briefly summarizes our investigations in these areas.

Background

There are key issues in Pressurized Water (nuclear) Reactor, PWR, safety and optimization
that rely on in-depth understanding of basic two-phase flow phenomena with heat and
mass transfer. The bulk of these can be placed within the context two bubble-dynamic
phenomena: boiling (heterogeneous), flashing (homogeneous boiling) and bubble collapse.
Other problematic phenomena, such as crud deposition, appear to be intimately connected
with the boiling process.

Because of the diversity of physical phenomena occurring in boiling, flashing, and bubble
collapse, and of the consequent length- and time-scales in LWR systems, it is imperative
that the models have the following features:

e Both vapor and liquid phases (and non-condensable phases, if present) must be
treated as compressible,

e Models must be mathematically and numerically well-posed, and



e The methodologies evolved to implement the models must be multi-scale.

In a previous report [1] focus was placed specifically on the compressible, well-posed, and
multi-spatial-scale requirements of advanced simulation methods for these LWR coolant
systems. There it was advocated that because of the expense of developing multiple
special-purpose codes and the need to couple information from the multiple length- and
time-scales, efforts within CASL should be focused toward development of multi-scale
approaches to solve the multiphase flow problems relevant to LWR design and safety
analysis. Efforts were recommended aimed at developing well-designed unified
physical/mathematical® and high-resolution numerical models for compressible, all-speed
multiphase flows spanning:

(1) Well-posed general mixture level (true multiphase) models for fast transient
situations and safety analysis,

(2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena
like flashing and boiling flows, and critical heat flux determination (necessarily
including conjugate heat transfer), and

(3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon
specified mesh resolution, and to couple different flow models (single-phase,
multiphase with several velocities and pressures, multiphase with single velocity
and pressure, etc.)?

Such development would extend the necessary foundations and build the capability to
simultaneously solve fluid dynamic interface problems as well as multiphase mixtures
arising from boiling, flashing or cavitation of superheated liquid, and bubble collapse, etc.
in light water reactor systems. It entails development on two main fronts. The first
requires the derivation (design) of theoretical models for multiphase and interfacial flows
whose mathematical description (equation system) is well-posed and exhibits hyperbolicity,
exhibiting correct wave dynamics at all scales. The second requires the design of
appropriate numerical schemes to give adequate resolution for all spatial and time scales of
interest. These models are not as well known as conventional single-fluid models and pose
significant numerical challenges, e.g. the numerical approximation of non-conservative
terms. In addition, these numerical issues can pose theoretical questions such as shock
wave existence in a multiphase mixture, cell averages of non-conservative variables, etc.

! That is, the effective, nonlinear system of first order partial differential equations.

? Specifically, a well-designed 2-pressure, 2-velocity, seven-equation two-phase mixture model (as in 1) can
be systematically reduced analytically to produce a 1-pressure, 1-velocity, five-equation model (as for 2)
capable of a DNS-like (Direct Numerical Simlation) resolved interface solution. If such a systematic reduction
is accomplished numerically on a local spatial level, then a general algorithm (such as 1) can be made to
reduce locally where appropriate to the interface resolved model (2), effectively giving an automatic multi-
scale treatment (as 3).



Such two-phase flow phenomena occurring inside light water nuclear reactors includes,
especially with departure from nucleate boiling (DNB) and film boiling instability (boiling
crisis), coolant phase changes and multiple flow regimes which directly influence the
coolant interaction with the fuel elements/assemblies and, ultimately, the reactor
performance. Because of the inherent coupling, an understanding of these phemonena,
along with subcooled boiling and bubble collapse, is also key to gaining an understanding
of crud depostion in these systems [2]. The goal of CASL development needs ultimately to
provide models giving highly resolved details where necessary, simultaneously with large
scale vessel/component simulation by providing a well-posed, multi-scale model that will:

e Resolve interfaces for larger bubbles (direct numerical simulation, DNS-like) with
single velocity, single pressure treatment (interface capturing), and

e Average (or homogenize) the two-phase flow field for small bubbles with two
velocities, two pressures.

Of course the resulting algorithms are to be implemented on modern parallel computing
machines for solving large-scale problems for the design and analysis of advanced
technology systems such as nuclear energy.

The primary, enabling feature of the INL (Idaho National Laboratory) multi-scale
methodology for multiphase flows involves the way in which we deal with multiphase
mixtures. Our multi-scale approach is essentially to solve the same equations everywhere
with the same numerical method [3]:

e In pure fluid,

e In multi-velocity mixtures

e In artificial smearing zones at material interfaces or in mixture cells,

e In phase transition fronts and in shocks.

There are several advantages with this approach:
e (Coding simplicity and robustness as a unique algorithm is used;

e (Conservation principles are guaranteed for the mixture. Conventional algorithms are
able to preserve mass conservation only when dealing with interfaces;

e Interface conditions are perfectly matched even for the coupling of complex media
(capillary fluids, transition fronts) even in the presence of shocks;

e This approach is the only one able to deal with dynamic appearance of interfaces
(spontaneous flashing (cavitation) and boiling);



e These methods allow the coupling of multi-velocities, multi-temperature mixtures to
macroscopic interfaces where a single velocity must be present. This capability can
be illustrated simply by considering the example of a cloud of bubbles rising up in a
liquid to the surface, where a free boundary (interface) is present. Two velocities
must be considered for the bubbles rising, while a single velocity must be present
just after their crossing through the interface. It is also desirable to resolve large
bubbles in which a liquid with small bubbles lies outside our large bubble and/or
vapor with small droplets lies inside the bubble. This is the only method able to
deal with such situations.

Because of the broad spectrum of phenomena occurring in light water nuclear reactor
coolant flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation,
wave propagation, large density variation convection, etc.) it is imperative that models
accurately describe compressible multiphase flow with multiple velocities. The high-
pressure and/or high-velocity conditions involved in these flows require that compressible
effects be considered for all phases. Conventional models3 of two-phase mixtures having
two velocities present are represented with a system of six partial differential equations:
two mass, two momentum, and two energy equations. With the assumption of pressure
equilibrium, these models have a single pressure common to both phases. These models
are not hyperbolic and are ill-posed. This means that initial data and boundary conditions
do not fully determine the solution at the next instant in time. Wave propagation may have
no physical sense with such systems because the square of the sound speed may become
negative.

This problem was remedied with the addition of seventh equation, a differential expression
(equation) of the pressure nonequilibrium condition, e.g. [4-9], describing the time
evolution of the volume fraction?, and which replaced the pressure equilibrium assumption
in the mixture. These terms control the rate at which pressure equilibrium is reached after
wave propagation (also as phase velocities equilibrate). Such models have 7- or 8-
equations for two-phase flow. (Note: Traditional 6-equation, two-phase models assume
both phase have a single pressure, are not hyperbolic, are ill-posed, and give wrong wave
dynamics solutions!). With this addition, the model became correctly (well-) posed and
unconditionally hyperbolic.

3 The complexity of multiphase, multi-component, and/or multi-material flow dictates that they need to be
examined in an averaged sense. Traditionally, one would begin with known (or at least postulated)
microscopic flow relations that hold on the “small” scale. These include continuum level conservation of
mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of
thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The
averaged or macroscopic multiphase conservation equations and entropy inequalities are then constructed
from the microscopic equations through suitable averaging procedures, as shown in the Appendix. At this
stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To
render the evolutionary material flow balance system unique, constitutive equations and phase or material
interaction relations are introduced from experimental observation, or by postulation, or from microlevel
numerical simulation) through strict enforcement of the constraints or restrictions resulting from the
averaged entropy inequalities. These averaged equations form the governing equation system for the
dynamic evolution of these mixture flows.

* Specifically, the volume fraction evolution equation is driven, at least in part, by a pressure relaxation effect.
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This seven-equation two-phase flow model can be given in slightly different form [10] as

d 0
% I%ZH(pl p2)+p_;
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for one phase, coupled to the other phase similarly as
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where, for two phases, the second volume fraction equation can be eliminated through the
saturation condition ¢, + o, =1. We point out that we have here neglected pressure

differences that can be sustained due to relative velocity between the phases, e.g. [11], or
due to surface tension effects. We refer to these sustained (or steady-state or static)
pressure differences as structural or configuration pressures because they are due to the
structure or configuration of the phases. These additional effects can be sustained at
steady state - thus for very rapid volume fraction evolution these residual force balances
can become an algebraic closure relation. Such pressure differences can be easily
accommodated, as appropriate, with modification of the volume fraction evolution
equation and the interface pressure expressions in the momentum and energy equations.
We neglect these terms here for clarity of presentation and retain only the fastest
thermodynamical nonequilibrium terms. For two phases, itholdsthat I';+I', =0. In
addition to equations of state for each phase closure relations for this system require the
determination of:

e The interface velocity u, and pressure p, representing the velocity and pressure,
respectively, that are exerted at the boundary of a cloud of bubbles or droplets,



e The average interface velocity u; and pressure p; that are exerted in the bulk of a
two-phase control volume,

e The relaxation parameters A and u that control the rate at which velocities and
pressures, respectively, relax to mechanical equilibrium.

This two-phase mixture model has little diffusion. The model can be difficult to solve
numerically, in particular with modern algorithms based on the Riemann problem solution
(see [1] and the references therein). Notice also that for use with DNS-like interface
resolving calculations:

e This model involves two pressures and two velocities,

e Atan interface the jump condition corresponds to continuous normal velocities and
continuous pressures,

e In order to fulfill this condition we can relax the two pressures and velocities to
unique equilibrium values.

These issues can be resolved by using specific relaxation solvers, with locally infinite
relaxation parameters, to solve interface problems and multiphase mixtures with two
velocities.

With this 7-equation model, reduced models are obtained naturally, characterized by
instantaneous equilibrium, or relaxation, (globally or locally) between pressures, velocities,
temperatures, and Gibbs energies. This makes it ideal for coupling to simpler codes,
“legacy” codes, or continuous reduction to simpler models when appropriate for faster
execution speeds. Note this 7-equation model will also form the basis of the new INL,
MOOSE-based, RELAP-7 LWR safety analysis code.

All-speed, and Long Time Duration Methods for Two-phase Flows
The success of this multi-scale, multiphase method relies on:

e Use of an unconditionally hyperbolic model for two-phase compressible mixtures,

e Accurate discetization of the nonconservative terms and equations, and

e Use of robust relaxation procedures to restore pressure and velocity interface
conditions based on large relaxation parameters.

Consequently, a good all-speed flow integration method is needed for two-phase flows.
Recalling from the thermodynamic properties of two-phase mixtures that effective sound
speeds in two-phase mixtures can be as low as a few feet per second, effective Mach
numbers ranging from nearly 0 to greater than 10 can easily result.
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The huge disparity of transient time durations, from milliseconds to years, produces a time
stiffness that creates serious numerical difficulties due to the different time scales. For
example the short duration, fast transients such as produced by flashing, bubble collapse,
and wave dynamics require numerical time steps based on the fastest signal speeds of the
system. On the other hand long duration, slow transients require much longer time steps
(even several orders of magnitude) to be efficient. This usually implies that some level of
implicit time integration be employed to achieve the larger time steps in a stable manner.
In addition to this time stiffness, low speed compressible flows can exhibit a coupling
which produces a type of “spatial stiffness” wherein an excessive number of spatial mesh
points are required to obtain an accurate solution. This occurs because the numerical flux
function must mimic the asymptotic behavior of the continuous equations for Mach — 0.
Classical Riemann and approximate Riemann approaches, which form the bulk of modern
computational fluid dynamics (CFD) for compressible flows, do not have this property and
therefore suffer from this low Mach number problem, especially for compressible liquid.

These ideas can be illustrated with a much simpler benchmark problem that specifies only
a single-phase, compressible flow. We consider the benchmark problem, constructed
originally for two-phase flow in [12], of transient compressible flow in a converging-
diverging nozzle. The flow can be started with nearly arbitrary initial conditions, after
which the flow undergoes a rapid transient wave solution, until a steady state is reached.

The converging-diverging nozzle has a cross-sectional area which is specified as a cosine
function of position along the axis of the nozzle, x

A(x):AO[H :

where 0 < x<1.0is in meters and A has units of Ap (m?, cm?, in?, etc.). The normalized
cross-sectional area is shown in the figure below. The inlet and outlet areas are equal.
The inlet conditions (left boundary) were specified as stagnation conditions of

Po=1 MPa
To=453 K.

The static pressure outlet condition was specified for subsonic flow (right boundary) as

p» = 0.5 MPa.
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Normalized nozzle cross-sectional area distribution (cosine function)

[t is assumed that the thermodynamic properties for compressible water (or its vapor) are
given by the stiffened gas equation of state (SGEOS)

e(p,p)=é:y11)”;+q
_ _ptp,
p(p’T)_(y—l)ch
h(T):ych+q
’ TY
g(p,T)=()/cv—q )T—chln(p+p )(y_l) +q

with parameters given in the following table:

Table 1. Stiffened gas equation of state parameters for water and its vapor
[LeMetayer, etal., 2004]

Water I q, (J-kg_l) q (J-kg_l -K‘I) Doy (Pa) Cy (J-lcg_1 -K‘l)
Liquid 2.35 -1167-103 0 10° 1816
Vapor 1.43 2030-103 -23-103 0 1040
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Phase change is not allowed here (single phase), so local pressures may become negative
which is permissible with the SGEQS, at least as long as temperature and density remain
positive. Notice that for p = p_ the fluid is nearly incompressible or weakly compressible

whereas when p is of the same order as p_the fluid is compressible in the traditional

sense. Also note that there are key applications where nearly incompressible is not the
same as incompressible.

From this we create two slow transient problems with solutions periodic in time, which are
dictated by boundary conditions.

Problem 1

The inlet conditions (left boundary) are specified as stagnation conditions of
Po=1 MPa
To=453 K

A static pressure outlet condition is specified for subsonic flow (right boundary) as a slowly
varying function of time

P, :O.5+O.lsin(%)MPa,

where time ¢ is specified in units of seconds. This specified static outlet pressure (back
pressure) is periodic over 20 seconds to simulate a longer term transient. Initial conditions
must be specified but, due to the scale of this problem, they will have negligible influence
on the longer term transient. All flow variables of the “nearly” steady solution will vary
slowly as the static outlet pressure is slowly varied. o

Problem 2

An interesting variant of Problem 1 above is specified by maintaining the static outlet
pressure (right) at
p» = 0.5 MPa

and specifying that the inlet stagnation conditions (right) vary periodically as

13
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r-1
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43200

With these slowly varying stagnation inlet parameters (period = 2 x 43200 = 86400
seconds = 1 day), the pressure distribution of the “nearly” steady solution will not vary at
all (in this long term), however the other variables will indeed change slowly. o

To gain better insight to these problems our research has focused in the following areas:
(1) low Mach number preconditioning, (2) low Mach number Riemann solvers, (3) IMEX
semi-implicit methods, and (4) Point implicit methods. Each of these will be summarized
in the sequel.

Low Mach Number Preconditioning

We examined a particular type of Low Mach number preconditioning [13] for each phase in
conjunction with our 1-D variable area DEM two-phase method [12]. As stated above, the
conventional Godunov method converges to the exact low Mach number solution only if a
very fine (excessively so) mesh is used. Such meshes are impractical for more than one
space dimension. For transonic to high Mach number flows, conservative formulations of
the equations are used and Riemann problem based solution methods work well. However,
difficulty arises with conservative formulations when the Mach number tends to zero when
the incompressible limit is approached. It appears that the corresponding Riemann solvers
give insufficient acoustic dissipation to finite volume methods and fail to provide an
accurate approximation of the incompressible equations. Recall that Riemann solvers are
based on linearizations, designed to slowly dissipate acoustic waves. The idea behind low
Mach number preconditioning is to manage the numerical dissipation in order to improve
the numerical convergence at low Mach number. Turkel [14] proposed to enforce pressure
time invariance up to Mach number squared fluctuations with the help of a penalization
method. This penalization idea can be used to modify the Riemann problem solution while
retaining the conservative formulation along with the real equation of state.

We first note that in the low Mach number limit, the solutions of Euler equations are in the
form

f=f(xt)+ f(x,7)
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where f is any variable of the flow, f, the dominant order, and f” its fluctuations. The

dominant order of the solution, with a “long” time which is denoted ¢, is related to the material
transport, while the fluctuations, related to acoustics, evolve with the fast time, denoted 7. The
relationship between these two times can be written as

T= M

where M represents a reference Mach number, which can be chosen, for example, as the
average Mach number, maximum Mach number, or local Mach number, etc. Briefly, using
these transformations, for each phase (single-phase) the 1-D Euler equations (primitive
formulation) is transformed to

p 0dp du

“rF., . %F -0

o “ox Pax

ou du 1dp

a2

ot uax+pax

ap 2 ap , L 0u
Mu—+ M —=

o TG T Mpe s =0

where the last equation comes from the pressure form of the internal energy equation.
This system is hyperbolic with wave speeds u,u+¢, , and u—¢_where

(1= 0|32 -1) s

c =

2
) (Mz—l)u+\/(M2—l)2u2+4Mzcz
C+= 2

These wave speeds are then used in the HLLC solver of the DEM method of [12]. Thus only
the Riemann problem for the Euler system (or DEM system) is modified. The fluxes are
computed with the HLLC solver and the Godunov method is used with the conservative
formulation of the Euler equations (DEM equations) and the unmodified equation of state.
This method guarantees conservation and correct jumps across waves - it only acts on the
numerical dissipation. The Mach number M above is chosen as a reference, either as a
global or local maximum, but notice that by taking its value as 1.0 the unmodified equations
result, so the method is also able to compute fast flows. When applied to low Mach
compressible liquid flows, this method gives excellent agreement with exact solutions, even
when coarse meshes are employed.

There is a drawback, however, with this low Mach number preconditioning approach. The
stability restriction for the scheme is more restrictive than the conventional CFL criterion
for compressible flows. The time step must abide

15



At < ML
max ([u|+c)

Because the lower the velocity of the flow, the lower M must be for convergence, the
corresponding Godunov scheme with low Mach preconditioning is thus accurate but still
expensive due to the time step restrictions. It is thus necessary to derive an implicit
scheme. At this juncture, we temporarily put this method aside for later reconsideration
with appropriate implicit time integration.

Low Mach Number Riemann Solver

The Godunov method for finite volumes is well developed for the simulation of steady and
unsteady compressible flows of moderate and high Mach number flows as well as for the
investigation of wave propagation phenomena (including sharp and accurate shock
capturing in unsteady flows). When applied to conservative equation systems, the
numerical methods are also conservative by construction and they enable efficient time
dependent simulations. Godunov type methods, however, can fail in the limit of low Mach
number flows. They require modification to overcome this problem wherein the accuracy
and the convergence of the Godunov approximation significantly decreases if the Mach
number is in the weakly compressible regime, roughly M <0.1. This slow convergence
(the requirement of excessively many spatial cells, or “spatial stiffness”, mentioned

previously) occurs because of the large difference between the acoustic wave speed |u| +c

and the convective speed u . If we define the stiffness or condition number C as the ratio
of the largest eigenvalue of the system to the smallest one,

|u|+c 1
= =1+—,
Ju M

C

and the maximum time step is limited by the fastest wave speed |u| + ¢, a larger condition

number ( M — 0) reduces the convergence rate of the numerical scheme. The decrease of
accuracy occurs because of the incorrect estimation of the numerical dissipation in the low
Mach number limit; especially for compressible liquids where, due to their high acoustic
impedance, the decrease of accuracy is even more intensified. This failure can be observed
by looking for example at the cell face values of velocity and pressure (used to create the
cell edge fluxes in finite volume methods). Assuming that the state variables are smooth,
any method based on compatibility relations (method of characteristics) or on Rankine-
Hugoniot relations will lead to interface condition comparable to

16



. _ (pc)L uy +(IOC)R g + (P, — Pr)
(pe), +(pe),
- _(pe), pr+(pe), p+(pe), (pe), (u, —uy)
(pc), +(pc),

Examination of the second equation shows that p" is dependent upon the velocity
difference across the cell face with a very large coefficient, the average acoustic impedance,
= p_c , which is close to a constant value if the Mach number remains small within the flow
field. This term also adds to the numerical dissipation in the numerical scheme. In
accelerating liquid flow-fields it can easily occur that p” is not bounded by p, and p,
unless the mesh is very fine, making it difficult to calculate the numerical “pressure flux” for
a smooth water flow. Because Godunov approaches treat all variations as discrete jumps,
the calculated interface pressure p" is extremely sensitive to small variations in the
velocity field.

This low Mach number problem is therefore related directly to the numerical
approximation of the interface pressure p". These Riemann approximations have been

investigated [15], and it was found that the numerical error they introduce grows inversely
proportional to the Mach number M as long as the number of cells N is kept constant.
Thus in order to use these equations it would require a factor of N : M ™' mesh points (in
each direction for multi-dimensional flow), which is usually not practical. To overcome this
low Mach number problem for cavitating liquid flow, a simple modified numerical flux was
developed [15] for compressible liquid flow using an asymptotically consistent pressure
flux definition

+ _ Pt DPr
p —2 .

The corresponding cell edge velocity remains the same as above. This simple modification
was demonstrated in the 1-D variable area DEM two-phase code [12] to yield very good
convergence; equivalent convergence was reached with about two orders of magnitude
fewer mesh cells. Notice that this pressure flux definition does not contain the coupling of
pressure and velocity that causes the low Mach number problem. Even though this
definition doesn’t contain the coupling of the Riemann problem above and is less
dissipative than the standard approximate Riemann approaches, the numerical stability
was well preserved in the simulations. Evidently, the definition of #" above includes
sufficient coupling of pressure and velocity.

17



IMEX Semi-implicit Method

For simplicity sake, rather than considering the compressible two-phase flow equations
with their additional complexities, let us instead consider the 1-D Euler equations for a
compressible single-phase flow

a£+8(pu)
ot ox
a(pu)+a(pu2+p)

ot ox
ot ox

=0

=0

=0

where E = pe+ % pu’ is the total energy and e is the internal energy. Augment this system

with the stiffened gas equation of state given previously to represent either a gaseous
phase or a compressible liquid phase. A popular method, with many variations, puts the
pressure in the momentum equation and the velocity or density x velocity product in the
mass conservation equation at the new-time level to create a semi-implicit discetization.
The momentum and mass equations are them manipulated to eliminate the new-time
momentum variables, leaving a Poisson equation in pressure. This Poisson equation is
then solved for new-time pressure, and by back substitution the other variables are found
at the new time level. This method is usually called the segregated approach.

For our two-phase flow model with two pressures, one for each phase, and with more
complicated coupling, such an approach which would, as a minimum, produce two coupled
Poisson equations along with another coupling through the volume fraction equation, this
approach may not be optimal. To avoid this complication and to eliminate the probable
occurrence of a splitting error with this segregated method, an alternative approach, the
IMEX semi-implicit method, is described.

Consider the simple flux vector splitting of the 1-D Euler equation system above

18
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T

Uz(p, pu, E)T Fz(pu,puz,(E+p)u )
C= u(p,pu, E)T P= (0, D, pu)T
ct = (a—pj isentropic sound speed

ap

s

F=C+P

Obviously, the eigenvalues of the Jacobian of C and P are (u,u,u) and (0, c,—c). The

information of the convective terms propagates uniformly in the same direction as the
velocity u. The information of the pressure terms goes with the convective terms at the
speed u and propagates in all directions at the speed c. Intuitively, to remove the acoustic
stability limit, at a minimum we should consider an algorithm in which C is evaluated
explicitly in time and P is evaluated implicitly in time. Notice that this splitting also tells
us that the acoustic information propagations occur due to the coupling of the momentum
and energy equations rather than the momentum and mass equations as used for most
segregated approaches. This same observation was noted long ago [16] and a similar path
has been recently followed [17, 18]. Therefore to follow this line of reasoning, we can
envision a predictor-corrector type splitting as follows:
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We now recast the implicit step (for an ideal gas) to

dp

-+ _0

ot

ou__1dp

ot  pox
ap__ B a_u
N (ry-1 5

The classical fractional step method to solve these two steps would entail first the solution
of the explicit step

pn+1 — pn —At(pu)"
(pu) =(pu)" - At(pu*)"
E' =E"—At(uE)"

n+1)

T
to produce the solution vector (p("”), u, p*) . Notice that p( = p". Next the implicit step

is solved
: 1 dp
(n+l) _ (n+l)
u =y —At——— (—
p(n+l) (ax)
n+ * n+ au n+
P = p = Ay =D (S
X
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T
(1) 1), p("“)) , as shown schematically here.

providing the complete solutions set ( P

The equations of this implicit step can either be combined to form a Poisson equation or
solved as a system interactively. There are some issues associated with this classical
approach:

e The explicit and implicit steps are executed independent of each other

e There is no, or limited, influence between the explicit and implicit solutions.

These are the main source of time errors. But there are some additional issues that can
become more important, especially when these equations are solved in a multi-physics
setting:

e Second order time discretizations do not produce second order time convergent
results (time order reduces to one)

e Nonlinearities do not converge completely when coupling different physics.

We therefore recommend the solution of these equations with a self-consistent IMEX
approach. With this approach the implicit block is solved based on the JFNK method, and
the explicit step is called within this implicit loop as part of the nonlinear function
evaluation [19], shown schematically here.

Our tests with compressible flows, gas and liquid, demonstrate there is a significant
advantage that is gained with this new approach. There is continuous interaction between
the explicit and implicit steps. This means, for each nonlinear iteration, that updated
implicit information is immediately felt by the explicit step and the more accurate explicit
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solutions are directly used to form the next set of nonlinear residuals. In this way, all the
nonlinearities in the system are consistently converged. This leads to an implicitly
balanced algorithm that preserves the second order time accuracy of the numerical scheme
(no order reductions).

This IMEX semi-implicit approach will allow additional terms (such as interactive sources)
to be included along with multiple pressure equations in a more straightforward and
accurate manner than segregated approach for the 7-equation two-phase model.

Lastly, there are efficiency gains that can be practically realized with this new approach.
During a transient, full IMEX can be employed with the increased stability of dictated by the
Courant condition based on material velocity (as opposed to the ordinary Courant
condition based on signal speed). This is excellent for rapid and moderately fast transients.
However, at steady state one can perform only the implicit step with a very large time step,
so for very slow transients, another alternative must be sought. In order to efficiently time
integrate these equations with very large time steps for slow transients, we turn now to the
final approach we examined, a point implicit method.

Point Implicit Method

We are particularly interested in solving the flow dynamics of nuclear reactors possessing
time-scales that are usually many orders of faster/slower than the other dynamics. For
example, a fuel behavior simulation may span multiple years of physical time, but it may be
necessary to simultaneously couple its behavior to the coolant flow behavior that
undergoes very slow, but never-the-less meaningful, transient variations over this time
frame. But the flow equations are compressible and hyperbolic, so their natural time frame
is much shorter, and most numerical methods for flow solutions are designed for either this
faster time frame or for steady-state (no transient). Generally, light water nuclear reactor
systems have a need, both operationally and during accidents, to be able treat slow
transients with very long duration. This is in addition to the already stringent requirement
to treat the very fast transients that could occur during accidents or off-normal operation.
For computational efficiency (expediency) for treatment of slow transients one would like
to be able to integrate with very large time steps, commensurate with the slow rate of
change exhibited by the system. This usually means that implicit time integration methods
must be used. However, fully implicit time integration of the 7-equation model, especially
in 3-D with highly resolved details may be computationally prohibitive. To treat slow
transient and steady state problems, we therefore introduce a point implicit time
integration technique that exhibits very large stability (large time steps), but very much-
reduced computational requirement (computational efficiency).

This point implicit method does not require implicit iteration, it rather time advances the
solutions in the similar spirit of explicit methods except it involves a few additional
function evaluation steps.
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For simplicity consider the following scalar equation
U +F(U) =0.
For numerical solution of this equation, consider the time discretization

UMt =Ur+aG(Ur, Ut o)

i+l

where G is the spatial discretization of F(U)x . Notice that this equation is implicit in time

for only U*'. Define AU, = Ul,”” —U]" and consider the following Taylor series

oG(Uy,, Uf,Ugl)AU
U, a

1

G(ur.urun)=6(ur,.urur, )+

i-1? i+1 i-1? i+1

Substitution of these expressions into the time discretized equation above gives

(Ait_aa_ijwi:c;(uzpv;',v;)

or

A Aol UL)

’ oG
1- A

U™ =U"+AU,

To treat an equation system with second order time discretization with this approach, see
[20] for details.

This point implicit method shares the characteristics of the robust implementation of
explicit methods and the stability properties of the unconditionally stable implicit methods.
It is specifically designed for slow transient flow problems in that we would like to perform
time integrations with very large time steps. We have found that the method can be time
inaccurate for fast transient problems, particularly with larger time steps. Therefore, an
appropriate solution strategy for a problem that evolves from fast to slow transient would
be to integrate the fast transient with an explicit or semi-implicit technique and then switch
to this point implicit method as soon as the time variations slow down sufficiently. Note,
our time integration algorithm can naturally transition very easily, on demand as flow
conditions dictate, from explicit to point implicit.
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As another instance, in a typical reactor thermal-hydraulic model problem, the heat
conduction parts can vary on a significantly faster time scale in comparison to the flow
portion. As a result of the stable nature of numerical solution techniques for heat
conduction one can time integrate the heat conducting part with very large time steps. In
turn, one may have to perform the time integration for significantly longer times for these
kinds of couplings. In this scenario, our point implicit method can stably and effectively
time integrate the slowly changing flow portion with whatever the time step sizes imposed
by other physics.

As we pointed out previously, even when considering only two-phase flow scenarios,
transitions from single- to two-phase and vice versa exhibits a large disparity of physical
time scales due to the corresponding large disparity of fluid and acoustic velocities and the
significant smoothing effects of the relaxation processes that can occur in the 7-equation
model.

Finally, the numerical implementation of this method is very robust since one can always
call this method inside any solver technology as part of the function evaluation routines.

Let us demonstrate, from [20], the point implicit method by application to the first nozzle
problem given above. The governing compressible flow Euler equations are slightly
modified to

dpA dpuA
ot " ox 0
dpuA N JdA(pu* + p) _ pB_A
ot ox ox
dpEA N JuA(pE + p) _0
ot ox

where 4= A(x) is the local cross-sectional area. We use the following initial conditions;

p=1MPa if x<0.5 else p=0.5 MPa. The problem is solved in [0, 1] interval with 200

grid points. With these settings, a transient flow is initiated. Consider first the flow of
compressible liquid with SGEOS data give in Table 1. Steady state flow occurs at
approximately #=0.56s. The solution history of the pressure and flow variables are

shown in succession until steady state is reached in the following two figures.
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Solutions from fast transient to steady state Solutions from fast transient to steady state
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The next two figures show the time succession of pressure and velocity from the slow
transient solution that we initiated with the oscillating outlet boundary condition. The red
dark regions represent slow transient solution snapshots densely overlain on top of each
other. Final time for the slow transient run is 7 =40. The point implicit time steps used for
these simulations are 100 times those required for the explicit acoustic Courant stability
condition.

Slow transient solutions. Slow transient solutions.
r T — — T . 120 - — — — — -
1F = I )
058 s i
F 100 |- i
oF | ]
= -0.5 E— _ 80| _
o = » B i
g E ]
g 15F Z sof -
o [¥] - R
2 g | |
'5. 25k > 40 __ __
3k I
-3.5 E— 20 ]
4k i
4=k N T T B B T T SR T R
459 02 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
x (m) x (m)

Now consider the exact same nozzle, initial and boundary conditions, but with compressible
gas as given with SGEOS parameters from Table 1, which corresponds to an ideal gas. With
these initial settings, the ensuing transient reaches steady state at approximately 7=0.21s.
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The following two figures show the history of the pressure and velocity until the steady
state is reached.
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The final two figures show the time succession of pressure and velocity from the slow
transient solution that we initiated with the oscillating outlet boundary condition. Again
the red dark regions represent slow transient solution snapshots densely overlain on top of
each other. Final time for the slow transient run is 7 = 20 (not run for as long because the
solution is oscillatory, and this represents a full period). The point implicit time steps used
for these simulations are again 100 times those required for the explicit acoustic Courant
stability condition.
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Conclusions

Four different methods were examined to address the need for all-speed, multi-time scale
integration of the two-phase flow equations. Because of budgetary limitations, the latter
two, IMEX semi-implicit and point implicit have not yet been applied with two-phase flows,
but only single-phase compressible gas and compressible liquid. All four show capability
for application within varying physical contexts. Obviously, though not attempted yet,
there may also be merit in combining some features of these approaches, e.g. the
preconditioned low Mach method (which need some level of implicitness for efficiency)
with the point implicit method. These and other variants will be examined in the future.
Our immediate next step will be to implement the point implicit method with the 1-D
variable area DEM two-phase model, which is restricted currently for stability reasons to
an inefficient explicit time stepping regimen.
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